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SUMMARY
The amygdala-prefrontal-cortex circuit has long occupied the center of the threat system,1 but new evi-
dence has rapidly amassed to implicate threat processing outside this canonical circuit.2–4 Through
nonhuman research, the sensory cortex has emerged as a critical substrate for long-term threat mem-
ory,5–9 underpinned by sensory cortical pattern separation/completion10,11 and tuning shift.12,13 In humans,
research has begun to associate the human sensory cortex with long-term threat memory,14,15 but the lack
of mechanistic insights obscures a direct linkage. Toward that end, we assessed human olfactory threat
conditioning and long-term (9 days) threat memory, combining affective appraisal, olfactory psychophys-
ics, and functional magnetic resonance imaging (fMRI) over a linear odor-morphing continuum (five levels
of binary mixtures of the conditioned stimuli/CS+ and CS� odors). Affective ratings and olfactory percep-
tual discrimination confirmed (explicit) affective and perceptual learning and memory via conditioning. fMRI
representational similarity analysis (RSA) and voxel-based tuning analysis further revealed associative
plasticity in the human olfactory (piriform) cortex, including immediate and lasting pattern differentiation be-
tween CS and neighboring non-CS and a late onset, lasting tuning shift toward the CS. The two plastic pro-
cesses were especially salient and lasting in anxious individuals, among whom they were further correlated.
These findings thus support an evolutionarily conserved sensory cortical system of long-term threat repre-
sentation, which can underpin threat perception and memory. Importantly, hyperfunctioning of this sensory
mnemonic system of threat in anxiety further implicates a hitherto underappreciated sensory mechanism of
anxiety.
RESULTS

Behavioral effects
As in previous nonhuman12,16,17 and human18 research, we em-

ployed a linear morphing continuum of odor mixtures, with the

two extreme odor mixtures (i.e., threat CS [CSt] and safety CS

[CSs]) differentially paired with bimodal unconditioned stimuli

(UCS) (i.e., aversive or neutral sounds and images; Figures 1A–

1C). We examined threat learning and long-term (9 days) threat

memory based on affective appraisal and perceptual discrimina-

tion (in an odor discrimination task [ODT]) of the CS.

Affective appraisal

Pre-experiment odor valence ratings (on a visual analog scale

[VAS] of 0–100) indicated neutral affective values for the five

odors, conforming to a flat neutral baseline over the odor con-

tinuum (p = 0.416; mean [SD] = 50.6 [19.7]). Risk ratings of the

odors (i.e., the likelihood of aversive UCS following a given

odor) were acquired postconditioning on day 1 and day 9.

Consistent with our hypothesis (Figure 2A), an ANOVA of odor

(five odors) and time (day 1/day 9) demonstrated a strong

ascending linear trend over the odor continuum (F1,30 = 6.99,

p = 0.013; Figure 2C). There was no odor-by-time interaction

(p = 0.908), suggesting equivalent trends for day 1 and day 9.
Curr
Akin to the linear trend, CSt and CSs had maximal and minimal

risk ratings, respectively (CSt versus CSs: t31 = 3.02, p = 0.005),

deviating from the neutral level (50%) in opposite directions

(CSt: t31 = 2.67, p = 0.012; CSs: t31 = �2.40, p = 0.023). Ratings

for the three nonconditioned stimuli (nCS) odors remained

neutral on both days (49.3%–51.3%; all p values > 0.581) and

comparable with each other (F1,31 = 0.14, p = 0.708) but differed

from CSt and CSs in opposing directions (neighboring CSt

[nCSt] versus CSt: t31 = �2.41, p = 0.022; nCSs versus CSs:

t31 = 1.92, p = 0.032 one-tailed). These results thus confirmed

that our differential conditioning produced a threat and a safety

CS that persisted till day 9, with limited generalization to the

non-CS.

Perceptual discrimination

Akin to the linear odor-morphing continuum, baseline ODT

performance conformed to a strong linear trend of increasing

endorsement of the dominant odor of the CSt (i.e., ‘‘CSt’’ rate),

F1,31 = 79.62, p < 0.0001 (Figures 2B and 2D). We hypothesized

that differential conditioning would expand perceptual distances

(i.e., enhanceperceptual discrimination) between theCSand their

neighboring nCS. Across the odor continuum, this expansion

wouldmanifest as a cubic pattern of differential ‘‘CSt’’ rates (post-

conditioning minus preconditioning), anchored by respective
ent Biology 32, 2067–2075, May 9, 2022 ª 2022 Elsevier Inc. 2067
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Figure 1. Odor stimuli and experimental design

(A) Stimuli consisted of a continuumof five parametricallymorphed binary odormixtures of neutral odors (acetophenone and eugenol labeled as odor A and odor B).

The extreme mixtures (20% A/80% B and 80% A/20% B; to rule out confounds related to pure or mixture odorants, all stimuli consisted of binary mixtures) were

differentially conditioned as CSt (threat) or CSs (safety) via paired presentation with aversive or neutral unconditioned stimuli (UCS: bimodal aversive or neutral

pictures and sounds). SCR evoked by the aversive (versus neutral) UCS confirmed their effectiveness (aversive versus neutral: t = 2.88; p = 0.007). Assignment of

CSt/CSswas counterbalanced across participants. The three intermediatemixtures (35%A/65%B, 50%A/50%B, and 65%A/35%B)were nonconditioned stimuli

(nCS), representing the odor neighboring CSt (nCSt), the midpoint mixture (nCSm), and the odor neighboring CSs (nCSs). Error bars represent standard error.

(B) Two-alternative-forced-choice (2-AFC) odor discrimination task (ODT) accompanied by fMRI and respiration acquisition. Each trial presented an odor mixture

pseudorandomly for 1.8 s, to which participants made judgments of ‘‘odor A’’ or ‘‘odor B’’ with button pressing.

(C) Experiment schedule. Day 1 consisted of preconditioning 2-AFC ODT, conditioning, postconditioning 2-AFC ODT, and odor risk rating. Day 9 consisted of

postconditioning 2-AFC ODT, odor risk rating, and an olfactory localizer scan.

(D) Regions of interest (ROIs). Anatomical masks of the primary olfactory cortex (anterior piriform cortex [APC] and posterior piriform cortex [PPC]), the olfactory

orbitofrontal cortex (OFColf), and the amygdala (AMG) are displayed on 3D T1 sections of one participant. These ROIs were further functionally constrained by the

olfactory localizer.

See also Figure S1.
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increase and decrease (from pre- to post-conditioning) in ‘‘CSt’’

rate for the neighboring odors of CSt and CSs—nCSt and nCSs

(Figure 2B [inset]). Indeed, an ANOVA of odor (five odors) and

time (day 1/day 9) on differential ‘‘CSt’’ rates confirmed this cubic

trend (F1,31 = 3.16, p= 0.043one-tailed; Figure2D [inset]). Like risk

ratings, there was no odor-by-time interaction (p = 0.405), sug-

gesting equivalent changes for day 1 and day 9. The expansion

between the CS and neighboring nCS was further ascertained in

a follow-up ANOVA (odor: nCSt/nCSs by time: day 1/day 9 on

differential ‘‘CSt’’ rates). We observed an odor effect

(F1,31 = 5.19, p = 0.030) and, specifically, a negative differential

‘‘CSt’’ rate for the nCSt odor (i.e., less CSt endorsement and

greater perceptual distance from CSt postconditioning) and a

positive differential ‘‘CSt’’ rate for the nCSs odor (i.e., more CSt

endorsement andgreater perceptual distance fromCSspostcon-

ditioning; Figure 2D [inset]). Again, this ANOVA showed no odor-

by-time interaction (p = 0.427), suggesting equivalent effects for

bothdays.Therefore,differential conditioningwarpedodorquality

space, particularly expanding perceptual distances between the

CS and neighboring nCS. Overall, results in affective appraisal

and perceptual discrimination converged to confirm threat

learning and long-term memory in the participants.
2068 Current Biology 32, 2067–2075, May 9, 2022
Neural effects
Nonhuman researchhasevincedplasticity associatedwith condi-

tioning in the sensory cortex that arises immediately and lasts for

days to weeks,19–21 serving a critical role in the formation5,22–24

and storage of long-term memory of conditioning.22,25–28 In hu-

mans, threat conditioning also induces immediate sensory

cortical plasticity.18,29–34 Recently, a link between human sensory

cortex and long-term memory of conditioning has begun to

emerge, indicated by enduring (15-day long) plasticity in human

visual cortex (i.e., enhanced V1/V2 response to CS)14 and impair-

ment in delayed (24 h) conditioned response following inhibitory

stimulation of human somatosensory cortex.15

Nonhuman research has revealed pattern separation/comple-

tion in the sensory (particularly, olfactory) cortex to underpin

memory of conditioning.10,11 The olfactory primary (piriform) cor-

tex is considered an associative, content-addressable memory

system and thus ideally positioned to store long-term memory

of conditioning.8,35,36 Nonhuman research has further implicated

‘‘associative representational plasticity’’ as a mechanism of

long-term memory and sharpened perception of the CS.12

This plasticity is characterized by sensory cortical tuning shift,

i.e., sensory cortical neurons initially tuned to non-CS become
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Figure 2. Behavioral effects of olfactory conditioning

(A) Hypothetical affective space over the odor continuum: the initial neutral baseline (gray line) would change to an ascending safety-to-threat line (black line) after

acquiring affect (safety/threat) through differential conditioning. Inset shows changes (D; post–pre) in odor affect over the continuum via conditioning, which

confirms to a linear trend.

(B) Hypothetical perceptual (quality) space over the odor continuum: the initial ascending trend (gray line: tracking the linear increase in the proportion of CSt)

would be warped after conditioning due to expanded distances (i.e., enhanced perceptual discrimination) between the CS (CSt/CSs) and neighboring nCS (nCSt/

nCSs) (black line). Inset illustrates the changes (D; post�pre) in perceived odor quality (solid line), which can be fitted by a cubic trend, anchored by respective

increase and decrease in ‘‘CSt’’ rate for nCSt and nCSs (dotted line).

(C) Empirical risk ratings (likelihood of aversive UCS) on both days conformed to the predicted profile of differential conditioning: below-chance risk for CSs and

above-chance risk for CSt. Risks for the three intermediate mixtures remained chance level (50%; indicated by the dotted line).

(D) Empirical 2-AFCODT performance (‘‘CSt’’ responses rate) over the CSs-to-CSt continuum conformed to a linear trend before conditioning, whichwaswarped

after conditioning. Inset illustrates differential (D) ‘‘CSt’’ rates (post�pre) over the odor continuum on day 1 and day 9, which largely conformed to the hypoth-

esized cubic trend. Specifically, perceptual distances between the CS and neighboring nCS increased after conditioning, with the nCSt odor less endorsed

as ‘‘CSt’’ and the nCSs odor more endorsed as ‘‘CSt’’ (i.e., less as ‘‘CSs’’). Error bars represent SE. (individually adjusted SEM). *p < 0.05.
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preferentially tuned to the CS.9,13,19,20 Critically, this plasticity

would consolidate over time and last for a long time, thereby un-

derpinning stable sensory representation and long-termmemory

of CS.7,12,13,37

We thus interrogated whether threat conditioning would

induce long-term pattern differentiation and tuning shift in the

human olfactory cortex (anterior and posterior piriform cortices

[APC/PPC]) using functional magnetic resonance imaging

(fMRI) representational similarity analysis (RSA)29 and voxel-
based tuning analysis,38,39 respectively. To compare the sensory

cortex with the canonical amygdala-prefrontal-cortex circuit,

supplemental analyses further explored these processes in the

amygdala and orbitofrontal cortex (OFC; Figure 1D). Importantly,

given that threat learning and memory represents an eminent

model of anxiety disorders,4,40,41 we examined individual differ-

ences in sensory cortical associative plasticity as a function of

anxiety, thereby identifying a sensory cortical underpinning of

anxiety.
Current Biology 32, 2067–2075, May 9, 2022 2069
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Figure 3. Olfactory cortical pattern differentiation between CS and neighboring nCS odors

(A) Group-average representational dissimilarity matrices (RDMs) for APC, PPC, OFColf, and amygdala (AMG) at each phase. Each cell of the matrix indicates

pattern dissimilarity (1� r), reflecting pattern differentiation, for a given odor pair. Cells right off the diagonal indicate pattern differentiation between neighboring

odors: CSs and nCSs (d1), nCSs and nCSm (d2), nCSm and nCSt (d3), and nCSt and CSt (d4). Based on that, we derived a pattern differentiation index (PDI) for

the CS and the neighboring nCS [PDI = (d1 + d4) � (d2 + d3)].

(B) PDI for each ROI at preconditioning, day 1, and day 9 postconditioning. Both APC and PPC (but neither amygdala nor OFC) demonstrated increased PDI from

preconditioning to postconditioning on day 1, but not on day 9. Center red line, group mean; red and blue boxes, 95% confidence interval and mean ± 1 SD,

respectively.

(C) Correlations between conditioning-induced PDI changes and anxiety. PDI changes on day 9 (versus pre) in the APC and PPC correlated positively with

anxiety, indicating persistent pattern differentiation in anxious individuals. *p < 0.05; +p < 0.1.

See also Figure S2.
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Plasticity in the olfactory cortex
Pattern differentiation

Immediate pattern differentiation for CShasbeen observed in the

human piriform cortex,29 which, we hypothesized, would persist

to support long-term threat memory. RSA was applied to extract

a pattern differentiation index (PDI), reflecting pattern dissimi-

larity (i.e., pattern differentiation) between the CS and its neigh-

boring nCS (Figure 3). ANOVAs of region of interest (ROI) (APC/

PPC) and time (day 9/day1) on thedifferential PDI (postcondition-

ing minus preconditioning) showed a main effect of time, F1,30 =

4.30, p = 0.047. This time effect reflected significant PDI increase

in the piriform (APC/PPC) cortex (t30 = 1.91, p = 0.033 one-tailed)

on day 1, in contrast to no PDI increase on day 9 (all p

values > 0.366). Interestingly, PDI increase in the piriform cortex

on day 9 correlated positively with anxiety (r = 0.40, p = 0.025,

FDR p < 0.05; Figure 3C), indicating that olfactory cortical pattern

differentiation persisted among anxious individuals. There was

no effect of ROI (p = 0.296) or interaction (p = 0.271): as illustrated

in Figures 3A and 3B, APC and PPC showed similar, significant
2070 Current Biology 32, 2067–2075, May 9, 2022
PDI increase on day 1 and similar significant correlation between

PDI increase on day 9 and anxiety. Finally, these results were

confirmed by nonparametric tests and leave-one-out cross-vali-

dation (supplemental information; Table S1).

Tuning shift

We then examined tuning shift toward CS in the piriform cortex,

i.e., whether voxels initially responded maximally to neigh-

boring odors of the CS (i.e., nCSt and nCSs) became maximally

responsive to the CS after conditioning.12,42 Before condition-

ing, tuning was evenly distributed across the morphing contin-

uum in the piriform cortex (and the supplemental regions—

amygdala and OFC); i.e., equivalent % of voxels tuned to the

five odors (all F values < 1.88; p values > 0.125). An ANOVA

of ROI (APC/PPC) and time (day 9/day 1) on tuning shift index

(TSI; % of nCS voxels toward the neighboring CS versus the

neighboring nCS) revealed a significant ROI-by-time interaction

(F1,30 = 6.99, p = 0.013) and no main effect of ROI (p = 0.379) or

time (p = 0.612). Specifically, the interaction reflected signifi-

cant TSI in the PPC on day 9 (t30 = 3.00, p = 0.005; FDR
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Figure 4. Olfactory cortical tuning shift toward the CS

(A) Day 1 (dashed lines) and day 9 (solid lines) postconditioning tuning profiles of nCSs (green) and nCSt (pink) voxels (i.e., respectively, tuned to nCSs and nCSt at

the baseline). In PPC on day 9, the nCS voxels exhibited a strong tuning preference for their respective CS: highest % of nCSs voxels tuned to CSs (shaded in

green) and highest % of nCSt voxels tuned CSt (shaded in pink).

(B) Tuning shift index (TSI; % of nCS voxels toward respective CS versus themiddle nCS) on day 1 and day 9 postconditioning. On day 9, PPC showed significant

TSI for both nCSs and nCSt voxels toward their respective CS (CSs and CSt, respectively). The dotted line indicates zero tuning shift (TSI = 0). Center red line,

group mean; red and blue boxes, 95% confidence interval and mean ± 1 SD, respectively.

(C) Correlations between anxiety and tuning shift toward CS (collapsed across nCSs and nCSt). Day 9 TSI in the PPC correlated positively with anxiety, indicating

amplified tuning shift in anxious individuals. The inset: in anxious (red dots), but not in nonanxious (blue dots), participants, day 9 PPC TSI correlated with day 9

PPC PDI increase (more details in supplemental information; Figure S2). *p < 0.05; **p < 0.01.

See also Figure S2.
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p < 0.05) but not on day 1 (p = 0.802) or in the APC on either

day (all p values >0.269; Figures 4A and 4B). Interestingly,

PPC TSI on day 9 positively correlated with anxiety, suggesting

that anxiety potentiated this delayed PPC tuning shift (r = 0.44,

p = 0.014; FDR p = 0.056; Figure 4C). Finally, these results were

confirmed by nonparametric tests and leave-one-out cross-

validation (supplemental information; Table S2).

Association between pattern differentiation and tuning

shift via conditioning

Results above showed that pattern differentiation and tuning

shift were both present on day 9 among anxious participants.

We thus explored the inherent association between these

plastic processes and found that PDI change and TSI in the

PPC on day 9 were correlated in the high-anxiety group

(based on median split; r = 0.45, p = 0.039 one-tailed;

Figures 4C [inset] and S2). By contrast, there was no
correlation (r = 0.04, ns) in the low-anxiety group. These re-

sults confirm the shared origin of these plastic processes in

threat conditioning and anxiety.

Plasticity in the amygdala and OFC
We then explored pattern differentiation and tuning shift in the

amygdala and OFC. As for pattern differentiation, the amygdala

showed amarginal increase in PDI on day 1 (t30 = 1.48, p = 0.075

one-tailed) but not on day 9 (p = 0.413; Figures 3A and 3B). The

PDI scores on neither day were correlated with anxiety (all p

values > 0.252; Figure 3C). The OFC showed no PDI increase

nor correlations of PDI increasewith anxiety (all p values > 0.292).

As for tuning shift, TSI in the amygdala and OFC showed no sig-

nificant tuning shift on either day (all p values > 0.169) nor corre-

lation with anxiety (all p values > 0.144; Figure 4). Therefore, in

contrast to the olfactory cortex, the canonical amygdala-OFC
Current Biology 32, 2067–2075, May 9, 2022 2071
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circuit failed to exhibit clear pattern differentiation or tuning shift

following conditioning.

DISCUSSION

We demonstrated affective and perceptual learning and long-

term memory, accompanied by immediate and lasting pattern

differentiation as well as late-onset, lasting tuning shift in the hu-

man olfactory cortex, especially among anxious individuals.

These findings highlight the role of the human sensory cortex

in threat memory and advance the extant (human and non-hu-

man) literature of anxiety modulation of the sensory cortical

system of threat memory. Together, they illuminate hitherto

underexplored human sensorymechanisms of threat processing

and their contribution to the pathophysiology of anxiety.

Differential conditioning is known to promote divergent condi-

tioned responses to (threat and safety) CS,minimizing condition-

ing generalization and facilitating CS discrimination (especially

from similar stimuli).17,29,43,44 Our risk ratings over a parametri-

cally morphed odor continuum confirmed differential affective

learning and memory for CSt and CSs and minimal generaliza-

tion to the nCS. Our ODT further demonstrated perceptual

(discrimination) learning and memory for CS (versus neighboring

nCS). Together, differential conditioning warped both affective

and perceptual spaces over the continuum, expanding the dis-

tance between the CS and their neighboring nCS and compress-

ing the distance among the nCS. Such paralleled reorganization

of affective and perceptual spaces reiterates that acquisition and

generalization/specification of threat response tracks the

perceptual distance between the CS and nCS.45–47

Neurally, the olfactory (APC and PPC) cortex exhibited imme-

diate and lasting pattern differentiation between the CS and

neighboring nCS, especially in anxious individuals. This pattern

differentiation resembles conditioning-induced pattern separa-

tion in nonhuman sensory cortex, underpinning CS memory rep-

resentation10,11 as a ‘‘perceptual-mnemonic’’ mechanism.48 It is

yet unclear whether this process directly relates to hippocampal

pattern separation characterized by sparse orthogonalized rep-

resentation.49,50 The humanPPC is acritical site for olfactory sen-

sory representation and underpins odor object encoding.51,52

The immediate effect in PPC replicates our previous finding, re-

flecting adapted sensory representation of CS.29 The lasting ef-

fect in PPC suggests that this plasticity would persist to support

enduring sensory cortical representation of CS as part of the

long-term memory of acquired threat/safety. The APC exhibited

a comparable effect, replicating decorrelation of APC responses

to CS and similar nCS in rodents.10,17 Given human APC’s role in

olfactory attention and arousal,52 this APC pattern differentiation

could reflect heightened sensory vigilance to CS.

The other mnemonic mechanism—tuning shift that underpins

associative representational plasticity—is also confirmed here in

humans, particularly in the PPC. Interestingly, this plastic pro-

cess was observed on day 9 only. This temporal profile accords

with nonhuman findings: sensory cortical tuning shift is relatively

weak inmagnitude and specificity immediately after conditioning

but becomes stronger over time (days and weeks).19 It also

coincides with our recent finding of delayed (day 16, but not im-

mediate) plasticity in human primary visual cortex (V1/V2).14

Therefore, this tuning shift, particularly in the PPC that is critical
2072 Current Biology 32, 2067–2075, May 9, 2022
for olfactory sensory representation, underscores time-depen-

dent associative representational plasticity in human olfactory

cortex to support enduring CS representation as part of long-

term memory of acquired threat/safety.7,19

In comparison, the amygdala and OFC exhibited no clear ev-

idence of pattern differentiation or tuning shift by conditioning.

The null findings here highlight the human sensory cortex

(outside the canonical threat circuit) as an independent neural

substrate for threat memory. That said, we analyzed these pro-

cesses expressly along a physical dimension (i.e., odor-morph-

ing continuum) to elucidate neural representation of CS sensory

input, which does not rule out amygdala/OFC associative plas-

ticity in other, abstract dimensions (e.g., valence or value). In

fact, previous research comparing (immediate, appetitive)

conditioning effects in the rodent piriform cortex and OFC has

revealed sensory-based plasticity in the former and value/rule-

based plasticity in the latter (e.g., 53). Similarly, human research

of (both appetitive and aversive) conditioning has underscored

value-based (versus sensory-based) pattern differentiation in

the OFC and amygdala.29,54,55 In sum, the contrast here high-

lights a sensory-bound representation system of threat memory

(‘‘S-memory’’) 56,57 in the sensory cortex.

Finally, leveraging self-report from human participants, we

demonstrated that anxiety amplified these threat mnemonic pro-

cesses in the sensory cortex. Similar to our recent finding in the

visual cortex,14 anxiety particularly heightened piriform plasticity

on day 9. This anxiety effect helps to reconcile the seeming tem-

poral dissociation between group-level (average) effects of

pattern differentiation (present on day 1) and tuning shift (present

on day 9), that is, in anxious individuals, the two forms of plas-

ticity were both present on day 9 and, moreover, correlated

with each other, highlighting their shared origin in threat condi-

tioning and anxiety. We caution that our sample could be small

for a study of individual differences, warranting replication

through future large-scale studies. Nonetheless, findings of sen-

sory-based long-term threat memory in anxiety lend direct

credence to anxiety theories centered on hyperactive sensory

memory of threat.56,57 They also confer mechanistic insights

into intrusive memories (a hallmark symptom) in post-traumatic

stress disorder (PTSD) laden with vivid sensory fragments of

trauma and readily triggered by simple sensory cues.58–60

To conclude, lasting pattern differentiation and tuning shift in

the human PPC, paralleling long-term threat memory, provides

mechanistic evidence for the human sensory cortex as a key

component of the threat circuitry. This long-term threat repre-

sentation may serve to underpin threat processing in the sensory

cortex, even in the initial feedforward sweep.61–63 Importantly,

that this sensory cortical mnemonic system of threat is hyper-

functioning in anxiety adds to the growing support for a sensory

mechanism—exaggerated sensory cortical representation of

threat—in the pathogenic model of anxiety.64
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Wen Li (wenli@psy.fsu.

edu).

Materials availability
All experiment stimuli are publicly available at a repository (https://github.com/LiLabFSU/Threat-memory-in-human-

olfactory-cortex). This study did not generate new unique reagents.

Data and code availability

d Anonymized data, including fMRI, behavioral, SCR and respiratory data, have been deposited at a repository (https://github.

com/LiLabFSU/Threat-memory-in-human-olfactory-cortex), as listed in the key resources table. They are publicly available as

of the date of publication.

d Analysis scripts have been deposited at a repository (https://github.com/LiLabFSU/Threat-memory-in-human-olfactory

-cortex), as listed in the key resources table. They are publicly available as of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
Thirty-three individuals (13 males; age 19.9 ± 2.0 years, range 18–25) participated in this two-session fMRI experiment in exchange

for course credit or monetary compensation. All participants were right-handed, with normal olfaction and normal or corrected-to-

normal vision. Participants were screened to exclude acute nasal infections or allergies affecting olfaction, any history of severe head

injury, psychological/neurological disorders, or current use of psychotropicmedication. All participants provided informed consent to

participate in the study, which was approved by the University of Wisconsin-Madison Institutional Review Board. One participant

who failed to provide risk ratings on Day 1 and another who failed to follow the ODT task instruction were excluded from the corre-

sponding analyses. Two participants were excluded from fMRI analysis due to metal artefact and excessive movement.

METHOD DETAILS

Anxiety assessment
We used the Behavioral Inhibition Scale (BIS) to measure trait anxiety.65 The BIS is a 7-item self-report questionnaire (score range:

7-28) measuring the strength of the behavioral inhibition system and threat sensitivity, known to reflect trait anxiety. This scale is
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neurobiologically motivated, with high reliability and strong predictive validity of anxiety,66,67 and recommended by the National Insti-

tute of Mental Health (NIMH) to measure the construct of ‘‘potential threat (anxiety)’’.

Stimuli
We included two neutral odorants, acetophenone (5% l/l; diluted in mineral oil) and eugenol (18% l/l). These odors have received

similar ratings on valence, intensity, familiarity, and pungency and been used as neutral odors in previous research.68,69 They

were labeled as odors ‘‘A’’ and ‘‘B’’ to the participants and were parametrically mixed into five mixtures to create a linear morphing

continuum: 80% A/20% B, 65% A/35% B, 50% A/50% B, 35% A/65% B, and 20% A/80% B (Figure 1A). The two extreme mixtures

(20% A/80% B and 80% A/20% B) served as conditioned stimuli (CS), differentially conditioned as threat CS (CSt) and safety CS

(CSs), counterbalanced across participants, via pairings with threat and neutral unconditioned stimuli (UCS), respectively. The three

intermediate mixtures were non-conditioned stimuli (nCS) and denoted as nCSt (neighboring odor of the CSt), nCSm (midpoint of the

continuum), and nCSs (neighboring odor of the CSs), respectively. The UCSwere bimodal (visuo-auditory) stimuli, including 7 pairs of

disgust images (three depicting dirty toilets and four vomits) and disgust sounds (i.e., vomiting) and 7 pairs of neutral images (house-

hold objects) and neutral sounds. Images were chosen from the International Affective Picture Set (IAPS)70 and internet sources.63

Disgust sounds were from the disgust subset of human affective vocalizations,71 and neutral sounds were pure tones (300, 500, and

800 Hz). Skin conductance response (SCR) data confirmed effectiveness of the aversive (vs. neutral) UCS (Figure 1A).

Odor stimuli were delivered at room temperature using an MRI-compatible sixteen-channel computer-controlled olfactometer

(airflow set at 1.5 L/min), which permits rapid odor delivery in the absence of tactile, thermal or auditory confounds.68,72,73 Stimulus

presentation and collection of responses were controlled using Cogent2000 software (Wellcome Department of Imaging Neurosci-

ence, London, UK) as implemented in Matlab (Mathworks, Natick, MA).

Unconditioned skin conductance response (SCR)
SCR was acquired with BioPac MP150 (BIOPAC systems, Goleta, CA) from two MRI-compatible Ag/AgCl electrodes placed on the

middle phalanx of the second and third digits of the non-dominant (left) hand at a sampling rate of 1000 Hz. A low-pass filter (0.5 Hz)

was applied offline to eliminateMRI scanning artifacts. For each trial, evoked SCR response was defined by themagnitude of trough-

to-peak SCR deflection during the interval between 0.5 s pre- and 7 s post-UCS onset (ITI = 14.1 s), with a minimal evoked deflection

of 0.02 mS. We compared SCR evoked by the aversive and neutral UCS during conditioning. In support of its effectiveness, the aver-

sive UCS produced significantly greater SCR than did the neutral UCS (t= 2.88, p =.007; Figures 1A and S1).

Odor discrimination task (ODT)
During the two-alternative forced-choice odor discrimination task (2-AFC ODT), each trial began with a visual ‘‘Get Ready’’ cue, fol-

lowed by a 3-2-1 countdown and a sniffing cue, upon which participants were to take a steady and consistent sniff and respond

whether the odor smelled like Odor A or B by button pressing (Figure 1B). Each of the five odor mixtures was presented 15 times,

in a pseudo-random order without repetition over two consecutive trials. Seven additional trials with a central, blank rectangle on

the screen (no response required) were randomly intermixed with the odor trials to help minimize olfactory fatigue and establish a

non-odor fMRI baseline. Trials recurred with a stimulus onset asynchrony of 14.1 s.

Experiment procedure
Pre-experiment screening

Approximately a week before the experiment, participants visited the lab to be screened for normal olfactory perception. They were

also introduced to acetophenone and eugenol as Odors ‘‘A’’ and ‘‘B’’ and practiced on a 2-AFC ODT between the two odors. They

also provided ratings on the five odormixtures.We performed analyses on odor ratings to exclude confounds related to inherent odor

stimulus differences. Baseline ratings for all five odor mixtures on valence, intensity, familiarity, and pungency were submitted to

separate repeated-measures ANOVAs, which revealed no significant difference among five odor mixtures on any of the scales (all

F values < 1.61, all P values > 0.182).

Experiment day 1

Participants first performed the 2-AFC ODT, then underwent differential conditioning, and then repeated the 2-AFC ODT (Figure 1C).

During differential conditioning, CSt and CSs odors were presented (seven trials each, randomly intermixed; ITI = 12 s) for 1.8 s while

the aversive or neutral UCSwerepresented respectively for 1.5 s at 1 s afterCSodor onset,with 100%contingency. Toprevent extinc-

tionby the repeatedunreinforcedCSpresentation during thepostconditioning 2-AFCODT (onbothDay1andDay9), five extra trials of

CSt pairedwith the aversive UCSwere randomly inserted.14,29,30,74 Data from these trials were excluded fromanalysis. After the post-

conditioning ODT, the five odor mixtures were presented (three trials per odor mixture, randomly intermixed), to which participants

performed risk rating (likelihood of an aversive UCS to follow the odor) on a VAS of 0–100%.

Experiment day 9

Participants repeated the 2-AFC ODT and risk rating. After that, participants underwent an independent olfactory localizer scan

involving a simple odor detection task, from which functional ROIs were extracted. Four additional odorants (a-ionone, citro-

nellol, methyl cedryl ketone, 2-methoxy-4-methylphenol), neutral in valence and matched for intensity, were presented in this

task (15 trials/odor), pseudo-randomly intermixed with 30 air-only trials.
Current Biology 32, 2067–2075.e1–e4, May 9, 2022 e2
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Respiratory monitoring
Respiration measurements were acquired (1000 Hz) during the ODT, using a BioPacMP150 (AcqKnowledge software) with a breath-

ing belt affixed to the participant’s chest to record abdominal or thoracic contraction and expansion. For each odor trial, a sniff wave-

form was extracted from a 6 s window post sniff onset and was baseline-corrected by subtracting the mean activity within 1 s

preceding sniff onset. Sniff parameters (inspiratory volume, peak amplitude, and peak latency) were generated by averaging across

all 15 trials per odor. We examined respiration parameters during the 2-AFC ODT, including peak amplitude, peak latency, and sniff

inspiratory volume. ANOVAs (Odor X Time) on these sniff parameters revealed no effects of odor or odor-by-time interactions (all

P values > 0.095). These results thus ruled out variations in sniffing as potential confounds.

Imaging acquisition and preprocessing
Gradient-echo T2weighted echoplanar images (EPI) were acquiredwith blood-oxygen-level-dependent (BOLD) contrast and sagittal

acquisition on a 3T GEMR750 MRI scanner. Imaging parameters were TR/TE = 2350/20 ms; flip angle = 60�, field of view = 220 mm,

slice thickness = 2mm, gap = 1mm; in-plane resolution/voxel size = 1.7231.72mm;matrix size = 1283128. A fieldmapwas acquired

with a gradient echo sequence, which was coregistered with EPI images to correct EPI distortions due to susceptibility. A high-res-

olution (13131mm3) T1-weighted anatomical scan was acquired. Five scan runs, including preconditioning, conditioning, Day 1

post-conditioning, Day 9 postconditioning, and odor localizer, were acquired. Six ‘‘dummy’’ scans from the beginning of each

scan run were discarded to allow stabilization of longitudinal magnetization. Imaging data were preprocessed in SPM12 (www.fil.

ion.ucl.ac.uk/spm), where EPI images were slice-time corrected, realigned, and field-map corrected. Images collected on both

Day 1 and Day 9 sessions were spatially realigned to the first image of the first scan run on Day 1, while the high-resolution

T1-weighted scan was co-registered to the averaged EPI of both scan sessions. All multivariate pattern analyses were conducted

on EPI data that were neither normalized nor smoothed to preserve signal information at the level of individual voxels, scans, and

participants.

A general linear model (GLM) was computed on preconditioning ODT, conditioning, Day 1 postconditioning ODT, and Day 9 post-

conditioning ODT scans. Applying the Least Squares All (LSA) algorithm, we set each odor trial as a separate regressor, convolved

with a canonical hemodynamic response function.75 Six movement-related regressors (derived from spatial realignment) were

included to regress out motion-related variance. For the odor localizer scan, we applied a GLM with odor and no odor conditions

as regressors, convolved with a canonical hemodynamic response function and the temporal and dispersion derivatives, besides

the six motion regressors of no interest. A high-pass filter (cut-off, 128 s) was applied to remove low-frequency drifts and an autor-

egressive model (AR1) was applied to account for temporal nonsphericity.

ROI definition
All four ROIs (APC, PPC, OFColf, and amygdala) were manually drawn on each participant’s T1 image in MRIcro76 (Figure 1D). The

olfactory OFC (OFColf) was defined by a meta-analysis77 and a prior study,78 and the other ROIs were defined by a human brain

atlas.79 Left and right hemisphere counterparts were merged into a single ROI. Functional constraints were applied to these anatom-

ical ROIs based on the odor-no-odor contrast of the independent odor localizer scan for each participant, with a liberal threshold at

P< 0.5 uncorrected.29

QUANTIFICATION AND STATISTICAL ANALYSIS

fMRI analysis
Representational similarity analysis (RSA)

The RSA uses correlations across multivoxel response patterns to indicate the degree of similarity in response patterns80,81 and thus

presents an effective test of pattern differentiation.29 For each participant and every ODT session, trial-wise beta values were ex-

tracted for all voxels within a functionally constrained ROI, which were then averaged across all 15 trials for each odor mixture, re-

sulting in an odor-specific linear vector of beta values across a given ROI. Pearson’s correlation (r) was computed between all pairs of

pattern vectors at each session, resulting in a 5 x 5 correlation matrix—the representational similarity matrix—for each session. To

directly represent pattern differentiation, this matrix was converted into a representational dissimilarity matrix (RDM) by replacing the

r valueswith dissimilarity scores (1 – r).82 To assess pattern differentiation, we computed a pattern differentiation index (PDI) based on

the RDM matrix (dissimilarity/distance = 1- r), following Fisher’s Z transformation: PDI = [(d1+ d4) – (d2 + d3)], reflecting the dissim-

ilarity/distance of CSt and CSs from their neighboring nCS odors (nCSt and nCSs, d1 and d4 respectively), controlled by the dissim-

ilarity/distance between the midpoint odor (nCSm) and its neighbors (d2 and d3).

Tuning analysis

We adopted a voxel-based tuning analysis used for visual sensory encoding38,39 to assess olfactory cortical tuning. Trial-wise beta

values (5 odors3 15 trials) for each voxel were normalized (by z-scoring) across trials after removing the trial-wise mean beta across

the ROI, from which we calculated mutual information (MI) conveyed by each voxel about each odor (see below). As low MI values

(i.e., minimal mutual dependence between the distribution of responses and odor) reflect indiscriminant or random responses to all

odors, voxels with bottom 10%MI values in a given ROI were excluded.38 Voxel-based tuning was defined by the odor mixture elic-

iting the largest beta (i.e., optimal odor). As such, each of the remaining voxels was classified into one of five odor classes. In line with

animal tuning analysis,12,42 we examined the voxels tuned to the neighboring odors (nCSs and nCSt) of the CS before conditioning
e3 Current Biology 32, 2067–2075.e1–e4, May 9, 2022
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and measured their tuning shift to the CS (relative to the neighboring nCS odor/nCSm) after conditioning. Accordingly, we derived a

tuning shift index (TSI) for Day 1 andDay 9 postconditioning: TSI = (%CSs –%nCSm) + (%CSt –%nCSm), reflecting the%of initially

nCSs/nCSt voxels that became tuned to the neighboring CSs/CSt, respectively, relative to the % of initially nCSs/nCSt voxels that

became tuned to the other neighboring odor—nCSm.

In terms of MI calculation, first, we converted the beta values into a discrete variable (B)by dividing the range of betas into a set of

equidistant bins (b). The size of the bins was determined by Freedman-Diaconis’ rule [bin size = (max(B) – min(B))/2*IQR*n-1/3], where

n is the number of trials (n = 75). We selected the median bin size of all voxels within an ROI based on the preconditioning data and

held it constant for the postconditioning sessions (Day 1 and Day 9). Next, we computed for each voxel the entropy of (discretized)

responses (B) as follows:

HðBÞ = �
X

b˛B

pðbÞlog2pðbÞ

where pðbÞ is the proportion of trials whose responses fall into bin b. Then, we computed conditional entropy HðBjoÞ, the entropy of

responses given knowledge of the odor condition, as follows:

HðBjoÞ = �
X

o˛O

pðoÞ
X

b˛B

pðbjoÞlog2pðbjoÞ

where pðbjoÞ is the proportion of trials falling into bin bwhen responding to a certain odor (o). The index ofMIðB;OÞ, i.e., the amount of

information a voxel conveys for an odor, was calculated as the reduction in entropy of responses given knowledge of the odor

condition:

MIðB;OÞ = HðBÞ � HðBjoÞ
Statistical analysis
Using analyses of variance (ANOVAs) of Odor (five mixtures) and Time (day 1 postconditioning and day 9 postconditioning), we per-

formed trend analysis over the odor continuum on risk ratings and ODT response to capture the warping of affective and perceptual

spaces by conditioning. We hypothesized that affective learning via conditioning would change the baseline neutral trend to an

ascending safety-to-threat trend (Figure 2A). We further hypothesized that differential conditioning would enhance perceptual

discrimination of the CS, expanding odor quality distances between the CS and their neighboring odors; resulting changes in

odor quality space (i.e., differential CS endorsement rates; postconditioning - preconditioning) would conform to a cubic trend,

anchored by respective increase and decrease in ‘‘CSt’’ rate for the neighboring odors of CSt and CSs—nCSt and nCSs (Figure 2B).

As for the neural mechanisms, i.e., enhanced pattern differentiation between the CS and similar (neighboring) nCS and tuning shift

towards the CS, we conducted ANOVAs of ROI (APC/PPC) and Time (day 1 postconditioning and day 9 postconditioning) on differ-

ential PDI scores and TSI scores, respectively. Finally, we examined modulatory effects of anxiety using Pearson’s correlation of BIS

scores with behavioral and neural effects of conditioning. Significance threshold was set at P< 0.05. Given the clear a priori hypoth-

eses, one-tailed tests were accepted and are explicitly noted in the Results (two-tailed tests are not explicitly noted). To protect for

Type I error, only significant effects in the ANOVAs were followed up with hypothesis testing. Correlational analysis with anxiety

involved multiple tests, which were corrected using the false discovery rate (FDR) criterion (i.e., FDR P< 0.05).
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